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Abstract

The classical Landau/Levich models of liquid-
propellant combustion, which serve as seminal exam-

ples of hydrodynamic instability in reactive systems,
have been combined and extended to account for a

dynamic dependence, absent in the original formu-

lations, of the local burning rate on the local pres-

sure and/or temperature fields. The resulting model
admits an extremely rich variety of both hydrody-

namic and reactive/diffusive instabilities that can

be analyzed in various limiting parameter regimes.

In the present work, a formal asymptotic analysis,
based on the realistic smallness of the gas-to-liquid

density ratio, is developed to investigate the com-

bined effects of gravity, surface tension and viscos-

ity on the hydrodynamic instability of the propa-
gating liquid/gas interface. In particular, a com-

posite asymptotic expression,spanning threedistin-

guishedwavenumber regimes,isderivedforboth cel-

lularand pulsatinghydrodynamic neutralstability

boundaries Ap(k), where Ap isthe pressuresensi-

tivityof the burning rate and k isthe disturbance

wavenumber. For the case of cellular(Landau) in-

stability,the resultsdemonstrate explicitlythe sta-

bilizingeffectof gravityon long-wave disturbances,

the stabilizingeffectofviscosityand surfacetension

on short-wave perturbations,and the instabilityas-
sociatedwith intermediatewavenumbers for critical

negative valuesof Ap. In the limitingcase of weak

gravity,itisshown that cellularhydrodynamic insta-

bilityin thiscontext isa long-wave instabilityphe-

nomenon, whereas at normal gravity,thisinstability

isfirstmanifestedthrough 0(i) wavenumber distur-

bances. It isalso demonstrated that,in the large-

wavenumber regime,surfacetensionand both liquid

and gas viscosityallproduce comparable stabilizing

effectsinthe large-wavenumber regime,therebypro-

vidingsignificantmodificationstopreviousanalyses

*This paper is declared a work of the U.S. Government and

is not subject to copyright protection in the United States.

of Landau instability in which one or more of these

effects were neglected. In contrast, the pulsating
hydrodynamic stability boundary is found to be in-

sensitive to gravitational and surface-tension effects,

but is more sensitive to the effects of liquid viscosity,

which is a significant stabilizing effect for O(1) and

higher wavenumbers. Liquid-propellant combustion

is predicted to be stable (i.e., steady and planar)

only for a range of negative pressure sensitivities

that lie between the two types of hydrodynamic sta-

bility boundaries.

1. Introduction

The burning of liquid propellants is a funda-

mental combustion problem that is applicable to var-

ious types of propulsion and energetic systems. The

deflagration process is often rather complex, with va-

porization and pyrolysis occurring at the liquid/gas
interface and distributed combustion occurring ei-

ther in the gas phase 1 or in a spray. 2 Nonetheless,

there are realistic limiting cases in which combus-

tion may be approximated by an overall reaction at

the liquid/gas interface. In one such limit, the gas

flame occurs under near-breakaway conditions, ex-

erting little thermal or hydrodynamic influence on
the burning propellant. In another such limit, dis-

tributed combustion occurs in an intrusive regime,

the reaction zone lying closer to the liquid/gas in-

terface than the length scale of any disturbance of
interest. Finally, the liquid propellant may simply

undergo exothermic decomposition at the surface

without any significant distributed combustion, such

as appears to occur in some types of hydroxylam-

monium nitrate (HAN)-based liquid propellants at
low pressures) Such limiting models have recently

been formulated, 4,s thereby significantly generaliz-

ing earlier classical models 6,7 that were originally

introduced to study the hydrodynamic stability of a
reactive liquid/gas interface. In all of these investi-

gations, gravity appears explicitly and plays a sig-



nificantrole,alongwith surfacetension,viscosity,
and,in the morerecentmodels,certainreaction-
rateparametersassociatedwith thepressureand
temperaturesensitivitiesof the reactionitself. In
particular,theseparametersdeterminethestabil-
ity ofthedeflagrationwith respectto notonlyclas-
sicalhydrodynamicdisturbances,but alsowith re-
spectto reactive/diffusiveinfluencesaswell.Indeed,
theinverseFroudenumber,representingtheratioof
buoyantto inertialforces,appearsexplicitlyin all
of thesemodels,and consequently,in the disper-
sionrelationthat determinesthe neutralstability
boundariesbeyondwhichsteady,planarburningis
unstableto nonsteady,and/ornonplanar(cellular)

modesof burning,s,9Theseinstabilitiesthus lead
to a numberof interestingphenomena,suchasthe
sloshingtypeof wavesthat havebeenobservedin
mixturesof HANandtriethanolammoniumnitrate
(TEAN)withwater.3AlthoughtheFroudenumber
wastreatedasanO(1)or largerquantityin these
studies,the limit of smallinverseFroudenumber
correspondingto themicrogravityregimeisincreas-
inglyofinterestandcanbetreatedexplicitly,leading
to variouslimitingformsofthemodels,theneutral
stabilityboundaries,and,ultimately,theevolution
equationsthatgovernthenonlineardynamicsofthe
propagatingreactionfront.

In the presentwork,15'16weformallyinvesti-
gateboththenormal-andreduced-gravityparame-
ter regimesin thecontextof a theory that exploits

the realistic smallness of the gas-to-liquid density ra-

tio p. The resulting analysis and results thus facili-

tate a comparison of some of the features of hydrody-

namic instability of liquid-propellant combustion at

reduced gravity with the same phenomenon at nor-

mal gravity. In addition, the small-p limit allows a

tractable synthesis of the separate models described

in previous analyses to simultaneously account for

the effects of viscosity (both liquid and gas), sur-
face tension and pressure sensitivity of the burning

rate on this phenomenon. In contrast, the original

analysis of Landau 6 neglected viscosity, while that

of Levich 7 retained liquid viscosity, but neglected

surface tension and gas viscosity. Neither of these

classical studies accounted for any variation of the
local burning rate due to pressure perturbations,

which has recently been introduced into this type of

analysis. 4,5 The latter study, in particular, presented

a highly tractable analysis of the inviscid case, thus

effectively generalizing Landau's model to account

for a pressure-dependent burning rate. By develop-
ing a perturbation analysis in the limit of small p,

we show how all the phenomena just described may

be simultaneously included, for both the normal and

reduced gravity cases. In addition, the pressure cou-

pling in the model predicts not only the cellular type

of hydrodynamic instability attributed to Landau,

but also a pulsating instability associated with suf-

ficiently negative burning-rate pressure sensitivities.

Both forms of hydrodynamic instability are analyzed

here, leading to explicit asymptotic representations

of the neutral stability boundaries.

gas/liquid interface:

2. Mathematical Model

The starting point for the present work is our re-
cent model 4,s that generalizes classical models 8,7 of a

reactive liquid/gas interface by replacing the simple
assumption of a fixed normal propagation speed with

a reaction/pyrolysis rate that is a function of the lo-
cal pressure and temperature. This introduces im-

portant new sensitivity parameters that couple the
local burning rate with the pressure and tempera-

ture fields. Thus, it is assumed, as in the classical

models, that there is no distributed reaction in ei-

ther the liquid or gas phases, but that there exists

either a pyrolysis reaction or an exothermic decom-

position at the liquid/gas interface that depends on

local conditions there. In its most general form, the

model includes full heat and momentum transport,

allowing for viscous effects in both the liquid and

gas phases, as well as effects due to gravity and sur-
face tension. For additional simplicity, however, it

is assumed that within the liquid and gas phases



separately,thedensity,heatcapacity,kinematicvis-
cosityandthermaldiffusivityareconstants,withap-
propriatejumpsin thesequantitiesacrossthephase
boundary.

Thenondimensionallocationof this interface
asa functionof spaceandtimeisdenotedby x3 =

_,(xl,x2, t), where the adopted coordinate system
is fixed with respect to the stationary liquid at x3 =

-00 (Figure 1). Then, in the moving coordinate
system x = Xl, y = x2, z = x3 - _s(Zl,X2,t), in

terms of which the liquidigas interface always lies

at z = 0, the complete formulation of the problem is
given as follows. Conservation of mass, energy and

momentum within each phase imply

v-v=0, z#0, (1)

00 0¢_00 {1}v2o, zX0, (2)Ot at Oz + v" VO= A

Ov 0¢ _ Ov
+ (v. V)v -- (0, O, -Fr -_)

Ot at Oz (3)

- p-1 Vp+ V2v, z <0,

where v, O and p denote velocity, temperature and

pressure, respectively, Pri and Prg denote the liquid

and gas-phase Prandtl numbers, p, A and c (used be-

low) are the gas-to-liquid density, thermal diffusivity

and heat-capacity ratios, and Fr is the Froude num-
ber. Here, the nondimensional variables have been

defined in terms of their dimensional counterparts

(denoted by tildes) as

v : -=-, p=_ (9=_
v _O_' ¢o - _' (4)

¢'= X,' t=37, ='=qT'

where 0 is the reference propagation speed of the

interface for the case of steady, planar deflagration.

The nondimensional parameters, some of which first

appear below in the conditions at the gas/liquid in-

terface (at z = 0), have been defined as

p= _-, m, , 9-_I' 7 _zAIUPl = _aa Fr = - - ~ ,

(5)
where 55u is the unburned (liquid) temperature at

z = -oo and T_ is the adiabatic burned (gas) tem-

perature at z -- +oo, _ is the coefficient of surface

tension for the liquid surface, and _ and _ are the

liquid and gas-phase kinematic viscosities. We note

that the Froude number Fr represents the ratio of

inertial to buoyant (gravitational) forces, and, for fu-

ture reference, that p)_Prg = I_Pq, where # = _g/]2l
is the gas-to-liquid viscosity ratio. In addition, we

introduce the nondimensional mass burning rate

A(pl==o+,el==o)=/i(t%_:_+, _l_.=_.)/_r), (6)

which is assumed to depend on the local pressure and

temperature fields in the vicinity of the liquid/gas

interface. Clearly, A = 1 for the case of steady, pla-

nar burning, but perturbations in pressure and/or

temperature result in Corresponding perturbations

in the local mass burning rate.

Equations (1) - (3) are subject to the boundary
conditions

v=0, O=O at z=-oo,
(7)

O=l at z=+oo, O],= 0- =el==0+

and appropriate jump and continuity conditions at

the liquid/gas interface. The latter consist of con-
tinuity of the transverse velocity components (no-

slip),

fi.x v_ = ft.x v+, (8)

where v+ = viz=o._ , conservation of (normal) mass

flux,

_,.(v_- pv+)= (1- p)s(¢,)-_-, (9)

the mass burning rate (pyrolysis) law,

fi,.v_ - 3(¢,)--_7- = A(pl=:o+,O1==o), (10)

conservation of flux of the normal and transverse

components of momentum,

pl:=o- - pl==o+= _,.(v_ - pv+)s(¢,) a__/

+ ,_,.[pv+(_,. v+) - v_ (_,. v_)
-pkPrge+ • *%,+ Prle- • fi,]

o_, [ f o_,__] _2o¢__,o¢, o_, }+'-#_--y_l+to=/J az Na-_ '
(n)

fi, x [pv+(_,- v+) - v_(_,- v_)

+(v_- = (n)

As x (pAPr_e+ • fis - Pr_e_ • As),



and conservation of heat flux

fa, . (cp_Velz=o, - vole=0-) =

-v_)el =o+ -v_)]

+ [(i - cp)el,:o + _(1 - a_p)]S('_s)-_-,
(13)

where 6 = c/(I - c,_),e isthe rate-of-straintensor

(e+ = elz=0,), 7 is the surface-tension coefficient,
a_ is the unburned-to-burned temperature ratio, and

S(@s) and the unit normal fis are defined as

s(¢,) = [1 + (o¢,/o=) _ + (ov,/ay) _]-'/=, (14)
_. = (-a,_,/a=, -O¢,lay, 1)s(,_,).

respectively. Finally, we note the influence of viscos-

ity on the jump in pressure across the liquid/gas in-

terface through the appearance of the Prandtl num-

bers Prl and Prg in Eq. (11). We also remark that

the momentum equation (3) suggests, as noted by a

reviewer, a singularity in the pressure distribution at
the interface itself due to the discontinuity in veloc-

ity there. However, this singularity does not affect

the jump in p across z = 0 that follows from conser-
vation of the normal component of momentum flux,

Eq. (11), which is all that is required to close the

present model.
A nontrivial basic solution to the above prob-

lem, corresponding to the special case of a steady,

planar deflagration, is given by

Here, the factor multiplying 3' in Eq. (11) is the cur-

vature -V • fi of the liquid/gas interface in the mov-

ing coordinate system, and the corresponding ex-

pressions for the gradient operator V and the Lapla-

cian V 2 in this system are given by

o o{, o 0 o¢,a o) (15)v = -_z oz Oz' Oy oy 0z' oz

and

v== as °2 r (0' '12 (° '121 a2
oz---_+-ff_y2 + L1+ \ o= / + k Oy / j Oz---_

_ 2 0¢_s 05 2CO@s 05
cOx OxOz COy COyOz

- k-O-_-x2 + ay 2 / Oz

(16)

However, the vectorv stilldenotesthe velocitywith

respectto the (xl,x2,x3) coordinatesystem. We re-

mark that the mass burning rate A may be typically

decomposed as

A(pl,,=o+,el==o) =

FN(I-a,,)(el,,=o- ])]
A(pl,=o+,el,=o)exp L a,, + (1 - o,,)el,=o J'

(17)

where .4 isa rate coefficientand N = E/R°Ta is

the nondimensional activation energy (E). However,

this more explicit representation will not be needed

in the stability analysis that follows. Instead, re-

sults may be expressed in terms of the pressure and

temperature sensitivities, defined as

Ap = cOA/cople=l,p=o, (lS)

Ae = coA/Oele=tm= o = N(1 - cr,) + Ae,

vo=_t eO(z)={e=, z<O' I, z>0,

v° = (0,0, v°) v0 = { 0, z < 0, p-l_l, z>0,

P°( z) = {-Fr-lz + p-l - l' z < O-pFr-lz, z > O.

(19)

The linear stability analysis of this solution now pro-

ceeds in a standard fashion. However, owing to the

significant number of parameters, a complete analy-

sis of the resulting dispersion relation is quite com-

plex. Realistic limits that may be exploited to facil-

itate a perturbation analysis of the dispersion rela-

tion include p << 1,/z << 1, and in the microgravity

regime, Fr -t << 1. In contrast, the earlier classi-

cal studies considered special limiting cases and/or

assumptions. Thus, in the study due to Landau, °

viscosity was neglected and the effects of gravity (as-

sumed to act normal to the undisturbed planar in-
terface in the direction of the unburned liquid) and

surface tension were shown to be stabilizing, leading

to a criterion for the absolute stability for steady,

planar deflagration of the form (in our nondimen-

sional notation) 47Fr-lp2/(1 -p) > 1. In the study
due to Levich, 7 surface tension was neglected, but

the effects due to the viscosity of the liquid were

included, leading to the absolute stability criterion

Fr-lPr_(3p) 3/2 > 1. Thus, these two studies, both
of which assumed a constant normal burning rate

(A = 1), demonstrated that sufficiently large values
of either viscosity or surface tension, when coupled

with the effects due to gravity, may render steady,

planar deflagration stable to hydrodynamic distur-

bances. In the present work, these results will be

synthesized and extended to the more realistic case
of a nonconstant burning rate (i.e., Ap _ 0) in both

normal and reduced gravity regimes.



3. The Hydrodynamic Linear Stability Problem

With respect to the basic solution (19), the var-

ious perturbation quantities Cs (x, y, t), u(x, y, z, t),

((x, y, z, t) and 0(x, y, z, t) are defined as

• , = _°(t) + Cs, v = v°(z) + u,
dO0 (20)

p = p°(z) + _ , O = O°(z) + O + ¢s--_z-z •

Substituting Eqs. (20) into the nonlinear model (1)

- (16) and linearizing about the basic solution (19),
we obtain a problem for the perturbation quantities

as
Oul Ou2 Ou3

o-E +-g_-y+-gF = 0, z#o, (21/

{l 0u ou
p JOt + 0--_=

Pr, (o2u O2u o2_

(22)
1 00 00

(23)

+ + + zXo
pA _-g_z: _ Oz2/ '

u=0, 0=0 at z=-o¢, (24)
0=0at z=+oo, 0l==0+-0l_=o- =¢,,

0¢, (25)

_l_=o- - _1_=o+= (p-_- i)_, (26)

"_I_=o-- _,I_=o+= (1- P)-_t"' (27)

0¢, = ApCl,=o+ + Ae0l_=o+, (28)
U3]z=0- Ot

¢[==o-- Cl.=o+= (2 - P)U3[z=o+- USlz=O-
Ou3

+2Prl-_-z]_=o -' _ _ .. Ou3zP'_rr9 --_-zm=o+ (29)

--(1--p)--_----7\ c0z2 -4- Oy 2 ],

pAPrg \ Oz .=o+ + Ox z=O+/

Ou3 _ (30)+ _-
k Oz I.---o- 0x ,=o- ]

(p-_-i)_--_'+_,I:=o+-_,I,_-o-,

(o ,21
pAPrg \ Oz [,=o+ Oy z---o+]

-Prl\oz Is=0- + Oy _=o-J =
(31)

(o-1- I)_ +,_2l.=o+-u2}.=o-,

001 o01cpA-z- - cOl,=o+ + 01,=o- =
OZ Iz=0+ _qz z=0-

epu3[==o+- (1+ e)uz]==o_+ [i + a(i - p)]_O_,
(32)

where a --- c(1 - _)-l.

In the present work, we shall focus, using our ex-

tended model described above, primarily on hydro-

dynamic (Landau) instability. Thus, in the linear

stability analysis, we retain only the pressure sen-

sitivity Ap in the perturbation of the pyrolysis law

(10), neglecting the temperature sensitivity Ao. The

latter assumption thus filters out reactive/diffusive
instabilities associated with the thermal coupling of

the temperature field, 4'5 but greatly facilitates the

analysis of instability due to hydrodynamic effects

alone. We note that the mass burning rate of many

propellants has been shown empirically to correlate

well with pressure.
Nontrivial harmonic solutions for Cs, u and ¢,

proportional to ei_t+ik_z+_k2_, that satisfy Eqs. (21)

- (22) and the boundary/boundedness conditions at

z = 4-0o are given by

Cs = e_t+ik'z+i_ , (33)

----- e iwt+iklx+ikay I blekZ -- FT-1
[ b2e -_z _ pFr -1 '

(34)

e i_t+i_,z+i_ ! b3eqz - iki(iw + k)-ibie kzZt l
( bae rz - iki (iwp - k)-ib2e -_z,

(35)

ei_+,_=+,_u _ b_eq:- ik2(iw+ k)-Ibie_
_2

t b_e rz - ik2(iwp - k)-lb2e -_z,
(36)

u3 = e_t+_k'_+ik_ _bTeq_ - k(iw + k)-Ible_
( bse TM + k(iwp - k)-lb2e -kz,

(3_)
for z X 0, where we have normalized the above so-

lution by setting the coefficient of the harmonic de-

pendence of ¢, to unity. Here, the signs of kl and

k2 may be either positive or negative and we have

employed the definition k = _, and q and r
are defined as

2Prz q = 1 + x/'l+ 4Prz( iw + Pr_ k2) , (38)



2#Prlr = 1 - _/1 + 41_Prl(iwp + #Pr_ k2), (39)

where we have used the fact, noted below Eq. (5),

that pAPrg = _Prl.
Substituting this solution into the interface con-

ditions (25) - (31) and using Eq. (21) for z < 0 yields
nine conditions for the eight coefficients bl - bs and

the complex frequency (dispersion relation) iw(k).

In particular, these conditions are given by

iklb3 + ik2b5 + qb7 = O, (40)

iklb4 + ik2b6 + rb8 = 0, (41)

53

b5

b7

ikl -b4+ ikl
iw + k bl iwp -

ik2 k bl _ bs + ik2
iw + iwp -

57

pk
iwk+kbt-pbs iwpLk b2=(1-p)iw' (44)

k kbl_Apb2=iw_pFr_lAp, (45)iw +

[1 + iw-_(2kPr,- 1)]bl

k
- [1+ + 2- p)]b (46)iwp -

+ (1 - 2PrL q)b7 - (2 - p - 2/_Pr_ r)bs =

(1 - p)(Fr -1 - iw) + 7k 2 ,

(_Prl r - 1)b4 + (2k#Pr_ + 1). ikl , b_
zwp -

+ ikl#Prt bs + (1 - Prl q)b3 - iklPrl b7 (47)

+ (2PrL k - 1)_--+--_Ol = P - 1 ikl,

(/_Prl r - 1)bs + (2k_PrL + 1) b2
Uop--

+ ik2#Prl bs + (1 - Prl q)bs - ik2Prl b7 (48)

+(2Pr, k-1) /_kbl= (_-l)ik2.

While the above problem is linear in the coefficients

bl - bs, the relationship for iw is highly nonlinear.
Accordingly, we ultimately will exploit the fact that

the gas-to-liquid density and viscosity ratios p and #

are typically small, as is Fr-1 in the case of reduced

gravity, and seek an asymptotic representation of the

dispersion relation in this parameter regime. As we

shall see, this distinguished limit simplifies the prob-

lem by inducing three distinct wavenumber regimes

that can be analyzed individually. Consequently, it

is possible to develop separate perturbation expan-
sions for the neutral stability boundaries in each of

these wavenumber regimes, which can then be com-

bined using asymptotic matching principles to pro-

duce a uniformly valid composite expression for each

boundary.

O

¢.

NEUTRAL STABILITY BOUNDARIES

1O Ap unstable

/ (_-'.o) (O-p)_)-'.o)

,*Y**- O, 71"0

\ o.o/
\..._"

........ _.-'. r. 7..'.0............ _..'..q...........................

. o,-p_-p)-')

stable

_0

'_o,-_x-p)-')

unstable (pulsating)

Figure 2

Hydrodynamic neutral stability boundaries in the

limit of zero viscosity.

4. Hydrodynamic Instability: Zero-Viscosity Limit

Although both liquid and gas-phase viscous ef-

fects will be shown to be comparable in general to

those due to surface tension, the inviscid limit pro-

vides a particularly tractable limiting case and moti-

vates the scalings to be used in the asymptotic anal-

ysis of the fully viscous problem. Thus, in the limit

of zero viscosities (Prt = Prg = 0), our extended
model differs from the classical one due to Landau 6

only in the local pressure sensitivity of the normal

burning rate. In that limit, the dispersion relation

with respect to infinitesimal hydrodynamic distur-

bances proportional to e i_t+ikx, where k and x are

the transverse wavenumber and coordinate vectors,



respectively,isdeterminedas5

App2(l - p)(iw)3 - p2k [I+ p + Ap(l - p)](iw)2

+ pk {Ap [p(1 + p)Fr -i + pk2-y - (I - p)k]

-2ok}
+ Apk2[(l - p)(2- p)k +

+ pk2 [(I- p)k - p(l

p2(3 - p)Fr -1 + p2k2_,]

- p)Fr -1 - pk27] = 0.

(49)
The corresponding neutral stability boundaries are

easily determined explicitly and are exhibited in Fig-

ure 2. Steady, planar burning is always unstable for

positive values of Ap, but in the region Ap _ 0, there

exist both cellular (w -- 0) and pulsating (w _ 0)

stability boundaries Ap(k; p, % Fr -1) given by

p [p(1 - p)Fr -1 + p'yk 2 - (I - p)k]

Ap = p2(3_p)Fr_ 1 + p_?k 2 + (1 -p)(2-p)k <- O,

W=0,

(50)
and

p , w2=k[l+PFr_l k s k]Ap= 1-p L_-p +_-p'Y+ '

(5i)
respectively, where k = Ik[. Steady, planar com-

bustion is therefore stable in the region Ap < 0
that lies between these two curves, where the pul-

sating stability boundary is a straight line in the

(Ap, k) plane and the cellular stability boundary is

a curve which lies above the former in the region

Ap >_ -p/(2 - p). The shape of the latter bound-
ary depends on whether or not the parameters Fr -I

and/or "y are zero. In the limit that the product

"yFr -I approaches the value (1 - p)/4p 2 from be-

low, the cellular stability boundary recedes from the

region Ap < 0. For 7Fr -I > (1 - p)/4p 2, the sta-

ble region is the strip -p/(1 - p) < Ap < 0. Thus,

when Ap = 0, the classical Landau result for cellu-
lar instability is recovered. However, even a small

positive value of Ap renders steady, planar burning
intrinsically unstable for all disturbance wavenum-

bers, regardless of the stabilizing effects of gravity

and surface tension, since there always exists a pos-

itive real root of Eq. (49) for Ap > 0 (for small p,

this root is given by iw ,,, k/Ap). This result may
be anticipated from quasi-steady physical consider-

ations. That is, a burning velocity that increases

with increasing pressure is a hydrodynamically un-

stablesituation, since an increase in the burning ve-

locity results in an increase in the pressure jump

across the liquid/gas interface, and vice-versa. How-

ever, a sufficiently large negative value of Ap re-
sults in a pulsating hydrodynamic instability, the

existence of which was a new prediction for liquid-

propellant combustion. Zero and negative values of
Ap over certain pressure ranges are characteristic of

the so-called "plateau" and "mesa" types of solid

propellants, l° as well as for the HAN-based liquid
propellants mentioned above. 3

Of particular interest in the present work is

the cellular hydrodynamic, or Landau, instability of
liquid-propellant combustion in the limit of small

gravitational effects (in microgravity, for example).

In this limit, the shape of the upper hydrodynamic

stability boundary in Figure 2, corresponding to the
classical type of instability that was first described

by Landau, 6 clearly approximates the Fr -i = 0

curve except for small wavenumbers, where, unless

the inverse Froude number is identically zero, the
neutral stability boundary must turn and intersect

the horizontal axis. Consequently, the neutral sta-
bility boundary has a minimum for some small value

of the transverse wavenumber k of the disturbance,

implying loss of stability of the basic solution to long

wavelength perturbations as the pressure sensitivity

Ap defined above decreases in magnitude. This, in

turn, suggests a small wavenumber nonlinear stabil-

ity analysis in the unstable regime, which generally

leads to simplified nonlinear evolution equations of
the Kuramoto-Sivashinsky type for the finite ampli-

tude perturbations, n,i2

To establish the nature of hydrodynamic insta-

bility in the microgravity regime in a formal sense, as

well as to introduce a formalism whereby the anal-

ysis of the fully viscous case may be simplified, we

may realistically consider the parameter regime p <<

1, Fr-i << 1, with Fr-i _ p. For example, typical

values are p ,-, 10 -3 - 10 -4, liquid thermal diffusiv-

ity Al "" 0.1 m2/sec, and the steady, planar burning

rate U ,-, 1 - 10 cm/sec depending on pressure. 3

Hence, from the definition Fr -1 --OAI/U 3, we con-
clude that Fr -1 _ p implies that the dimensional

gravitational acceleration _ < 10-Sm/sec 2, which,

roughly speaking, marks the onset of the micrograv-

ity regime. Thus, introducing the bookkeeping pa-

rameter e << 1, we define scaled parameters g*, p*

and Ap according to

• {p= p*e Ap= Ape, Fr -1 = g (52)' g*e '

with 7 remaining an O(1) parameter. Here, the

lower scaling on Fr -i corresponds to the reduced

gravity limit, whereas the upper definition indicates

the normal gravity case. In both regimes, it is read-

ily seen from Eq. (50) that there are three distinct
wavenumber scales that must be considered in order



toproperlyaccountfortherelativemagnitudeofthe
varioustermsin thenumeratoranddenominatorin
theexpressionfor Ap. In particular, in addition to

the O(1), or outer, scale k, there is an inner scale k_

and a far outer scale k I that are respectively defined
as

_ k/e, Fr -1 ,_ O(1)
k,= [.k/e2 ' Fr_ 1,,_O(e) ' kf=ke. (53)

In the thin inner and thick far outer regions, we thus

readily obtain

and

• {Ap _ A_ (i)_., p*(p*g - ki)/2k,
p*(p'g*- k,)/2k_'

(54)

• 1.-. k ,
Ap .._A; (])..._p (p 7 / - 1) (55)

"_._O
respectively• Each of these two expansions may be

matched to the O(1) outer expansion, which is given

by
. (o) 1 ,

Ap,_A; ,-_-_p , (56) _.
?-

and thus a uniformly valid composite expansion, de-

noted by A_(C)(k), may be constructed as

A_( _.c),,_ ?"

A; (0 + A; (°) + A; (1)- klilnoo A; (')- lim A; (/)
k l ---*O

,..-2pl. + lep.27k + { ep*2 g/2k , ,_e2p*2g*/2k 9"

(57a)
where the definitions of k_ and k I have been used to

express the final result in terms of k (Figure 3). In

terms of the original unscaled parameters, Eq. (57a) o7_
beomes

P p27k p2Fr-1 (57b)
Ap ,., -2 + T + 2_'

?-
which eliminates the small scaling parameter e from
the composite expansion• Noting the simplicity of

the asymptotic result (57) relative to the exact ex-

pression given in Eq. (50), it is easily seen that the
7

hydrodynamic stability boundary in the regime con-

sidered here lies in the region Av _< 0, intersecting

the Ap = 0 axis at

1
k = k_ ,-.,-- >> 1 (58)

p* Te

p*gek = k2 ,_ p.g.e 2 << 1, (59)

and at

with a single local minimum at

k=k~{v (60)v 74 o(v )'

corresponding to the critical value

. 1_ { eP*2v,'_= A; ,,, -2p* +Ap (61a)I

Thus, in terms of the unscaled parameters, instabil-

ity first occurs for disturbances at the critical value

Ap = f_p ,_ _lp + p2x/_Fr_I . (61b)

The essential difference, as illustrated by Figure

3, between the normal and reduced gravity limits in

HYDRODYNAMIC STABILITY BOUNDARIES (p << I)

A_ Inviscid Case (P = 0)

(cfer-'.o) unstable k ((,dT}-'.o)
i i i _ i i l i i i

t 2 3 4 5 6 "} _0 tt

unstable (eellular_#

._ _, "1

........... Pr" _ 0. 7.,0 _=0

,,_,¢o.-p'm .",--'= :, - o ,.,- o

stable

(O,-p') r_ # 0

unstable (pulsating)

Figure 3

Asymptotic representation of the cellular hydro-

dynamic neutral stability boundary in the limit of

zero viscosity. The upper (lower) solid curves cor-

respond to the two cases described by Eqs. (57) for
normal and reduced-gravity, respectively (curves are

drawn for the case e = 0.04, p* = 1.0, g = 2.5,

g* = 1.0).



therealistic parameter regime considered here is that

in the latter instance, gravity is only capable of sta-

bilizing disturbances whose wavenumbers are very

small, O(e2), whereas in the former case, gravity

is sufficiently strong to stabilize disturbances whose

wavenumbers are O(e). As a consequence, hydro-

dynamic instability becomes a long-wave instability
phenomenon in the reduced gravity regime consid-

ered here, since the most unstable wavenumbers are

O(V_ ), rather than O(1), in that case. We note that

the role of surface tension, on the other hand, serves

to stabilize only short-wave disturbances, which are,

to this order of approximation, unaffected by the

magnitude of the gravitational acceleration.

5. Hydrodynamic Instability: Yhlly Viscous Case

Guided by these results for the inviscid case, the

linear stability analysis may be extended to include

the effects of viscosity as follows. Retaining the scal-

ings (52), we have noted that pAPrg = #Prl, where

# = #9/#1 is the gas-to-liquid viscosity ratio. Thus,

it is reasonable to treat Prt - P as an O(1) param-
eter, and to consider the limit

= #*e << 1. (62)

Introducing the scalings (52) and (62) directly into
Eqs. (40) - (48), approximate solutions for the coef-

ficients may be sought in the form of appropriate ex-

pansions in powers of e. As suggested by the inviscid

analysis, it is necessary to construct separate expan-
sions for the inner, outer and far outer wavenumber

regimes defined above. Since we are interested in ob-

taining the hydrodynamic cellular stability bound-

ary, we may set iw equal to zero directly and seek

solutions for bl - bs and A_, where the latter ex-
pressed as a function of k will describe the stabil-

ity boundary. Forms for the various expansions are

suggested in part by the corresponding solutions for

these coefficients in the inviscid limit (for which ex-
act solutions are analytically tractableS).

In the O(1) wavenumber regime, the expansions

for q and r are, from Eqs. (38) and (39),

r,..rte+..., rt=_*Pk 2, (63)

1 + _/1 + 4P2k 2
q_q0+'", q0= 2P , (64)

and appropriate expansions for the coefficients bl -

bs and Ap are given by

b,~ b_-1),-1+ b?)+b?)_+.., i = 2,8_65)
bi~b_ °)+b?)e+''', i=1,3,4,5,6,7,(66)

Ap = A_(°)e ,-. e(A_ (°) + A*l(°)e +...). (67)

Substituting these expansions and the scalings (52)
and (62) into Eqs. (40) - (48), and collecting coef-

ficients of like powers of e, we obtain a sequence of

algebraic problems for the coefficients in Eqs. (65)

- (67). In particular, from either of Eqs. (42) and
(43), we obtain

b_-_) = -k/p', (68)

and the leading-order versions of Eqs. (44) - (46)
are given by

go)_ blo)_ p'b_-')+p'b_-_)=0, (69)

b?)- bl°)- A;(%-') =0, (70)

hi-')- 2hi-'): 0 (7_)
Subtracting Eqs. (69) and (70), and using Eqs. (68)

and (71) for b(-D and b_-D, we obtain the result

= -_p'. (72)A_ (o)

Equations (67) and (72) are equivalent to the invis-
cid result (56) in the outer wavenumber regime, and

thus, to the leading order of approximation, viscos-

ity does not affect the neutral stability boundary for

O(1) disturbance wavenumbers.
A corresponding result is obtained in the inner

wavenumber regime defined by the first of Eqs. (53).
In particular, the expansions for q and r are now

given by

r._#.pk_{e3+... _1 {_2+...es+ ' q"_ + Pk 2 e4+ '

(73)
and the expansions for the coefficients bl - b8 and

Ap may be sought in the form

.(o) _ .(i) _
bi ~ oi to i e "r " ",(1) _,(2) 2- i=2,8, (74)

O_ _ "-_ 0 i _ "_- '''

{,"
.( ) _.(2) 2-
0 i _ _ 0 i _ Jr''"

bi _ (1).2 -- _(3).3 -- , i = I, 3, 4, 5, 6_T_)
bi ¢ -r% ¢ -t-. •

Ap = A;(0e ~ e(A; (0 + AT(0e +-..). (76)

Substituting these expansions and the scatings (52)
and (62) into Eqs. (40) - (48) as before, we again

obtained a much-simplified set of algebraic equations

at each order. In the reduced-gravity regime, for

example, we obtain from Eq. (40) and either of Eqs.
(42) or (43) that

k, (77)_,_2_=o, C =-,=,



while Eqs. (44) - (46) give

b_:)- b_2)- p*b_'_+,@) =0, (78)

b(?)- b__)- A;(')_())=o, (79)

b__)- 2bl'_: ¢. (80)
An identical set is obtained in the normal-gravity

regime in terms of the leading-order coefficients in

the expansions (74) and (75) for that case, with the
exception that g* is replaced by its unscaled coun-

terpart g in Eq. (80). Subtracting Eqs. (78) and

(79) and using the results (77) and (80), we thus
obtain

A;(,>~ { p'(p'g - k,)/2k, (Sl)p*(p* g* - ki)/2ki '

which is again equivalent to the inviscid result (54).

Thus, to leading order, neither the inner nor the

outer wavenumber regimes are influenced by viscous

effects. Indeed, to a first approximation, viscosity is

only significant for large-wavenumber disturbances,
as we shall now demonstrate.

In the far outer wavenumber regime defined by

the second of Eqs. (53), the expansions for q and r

are given by

1 - (1 + 4#*2p2k_) 1/2
7" _'_ 7"(_1) E-l+ ... , r(_l) -- 2#*P '

(82)
q"_ q(-D E-1 +''" , q(-D = kl, (83)

and appropriate expansions for the coefficients bl -

bs and Ap are given by

b_~ bl-_)_-_ + bl°)+..., i : 1, a, 5, 7, (84)

bi...bl-2)E-2+bl-1)e -l +..., i=2,4,6,8,(85)

Ap = A;(I) E .._ E(A; (f) + A_(I) E +...). (86)

Substituting these latest expansions into Eqs. (40)

- (48), we obtain the leading-order system

ikllg-'+ik_ib(_-'+q(__)g-" =0, (87)

ik,_g-:)+ik_b_-:)+_(__)bi-_)=0, (88)

_b(-2) ikll h(-2 ) = ikllk-i_ p--=,., (89)

_b__2) ik2 I h__2) = ik2]k-_°_ p" , (90)

b(_-')-b?'-.'b_ -_>+/b(_-_)=0, (9_)

b(_-') - g-_)- A;(_)b_-_)= 0, (9:)

2k_Pbl-_)+ (_+ 2k_.'P)bl-_)- 2Pq(_#_-_)
- 2(1 - #*Pr(_l))b (-2) = "_k2I,

(9a)
* 1_ ikll/,(-2)

(# Pr(__)- 1)b_ -2) -(2kllz*P + ",-_/_2

+ ik,l#*Pb_ -2) - pq(_l)b_ -_) + 2ik_zPb[ -_)

_ ikilPb(7__) = ik_l,
p*

(94)

_ ik2l _(-2)
(.*Pr(__) - 1)b_ -2) - (2kip.*P + .,--_i _2

+ ikRl#*Pb (-2)- pq(__)b (-') + 2ik2zPb_ -_)

_ ik2lPb(7__) = ik2],
p*

(95)

where, analogous to the scaling for k in the far outer

regime, k_ I = k_e and k2I = k2e. Equations (87) -

(95) may be solved for the leading-order coefficients

in Eqs. (84) - (86) such that, after some algebra

(Appendix A), we obtain the result

A;(_)= p" [r(-1) (kI -F r(_,))

(96)
which may be rewritten as

A; (I)_ -p*

2p*#*P [1 + kz(p* 7 + 2/z*P + 2p'P)]
+

4#*P(1 -t- p*Pkl) - [1 - R(k/)] (p*-y -t- 2/_*P) '

R(kl) = [1 +4,*2P2k_J '/2

(97)
It is readily observed that both the liquid and the

gas-phase viscosities (through the parameters P and

p'P, respectively) enter into this expression, reflect-

ing an equal influence of viscous and surface-tension

effects on the neutral stability boundary in the large-

wavenumber regime. The equal importance of gas-
phase viscosity relative to that of the liquid phase

stems from the fact that gas-phase disturbances are,

according to Eqs. (84) and (85), larger in magni-
tude than those in the liquid phase, such that a

weak damping of a larger magnitude disturbance is

of equal importance to an O(1) damping of a smaller

magnitude disturbance. In the limit P _ 0, the in-

viscid expression (55) is recovered. It is easily shown
that

lim A_(I)= _lp., (98)
k l --*O

10



sothat thefaroutersolutioncanbematchedtothe
outersolution(72).Ask I increases, A_ (/) increases,

intersecting the A_ (D = 0 axis at the value kf =/_f

given by

Figure 4 that increasing the values of any of the

parameters P, #*P or 7 serves to shrink the size
of the unstable domain through damping of short-

wave perturbations. The non-negligible effects of

( (99)kf= 1

which agrees with the inviscid result for p* << 1 in

the limit #*P --_ 0. As this boundary crosses the

horizontal axis, it must eventually reach a maximum

and decrease to At (f) = O, since limkF_.o_ A_ (I) = 0.
However, as indicated earlier in the discussion of

the inviscid case, there is another root iw _ O(e -2)

that takes on positive values for Ap > 0 (Appendix
B). Consequently, only that portion of the hydrody-

namic stability boundary that lies below the hori-

zontal axis (A_ = 0) is relevant to our discussion.
A uniformly valid composite expansion span-

ning all three wavenumber regimes described above

may be constructed as in Eqs. (57), giving the result

p,2

~ -p*+ _2g*

2p*#*P [1 + ek(p*7 + 2#*P + 2p*P)]

4#*P(1 + ekp*P) - (P*7 + 2#*e)[1 - R(ek)] '

(100a)
or, reverting to the unsealed parameters Ap, p, /z
and Fr- 1,

p2

A_(c) _., -p + -_ Fr -1

2ppP [1 + k(p7 + 2#P + 2pP)]
+

4#P(1 + kpP) - (fry+ 2pP)[1 - R(k)] '

(100b)
which again eliminates the small bookkeeping pa-
rameter e from the problem. Both the normal and

reduced gravity boundaries A;(C)(k) are graphically
exhibited in Figure 4 for various zero and represen-

tative nonzero values of p*, P, Fr -1 and 7. It is

readily seen that the essential qualitative difference

between the normal and reduced-gravity curves is
the location of the critical wavenumber for instabil-

ity. Specifically, the minimum in the neutral sta-

bility boundaries occurs for 0(1) values of k under

normal gravity, and at k ._ O(e 1/2) in the reduced-

gravity limit considered here, as in the inviscid case
described above. Indeed, it may be shown that Eqs.

(100) collapse to Eqs. (57) in the limit of zero viscos-

ity (P = 0), but we again note that viscous effects

in both the liquid (P) and gas (#*P) are compara-

ble to surface-tension effects (7) in damping large-

wavenumber disturbances. In fact, it is clear from

"_. HYDRODYNAMIC STABILITY BOUNDARIES (p << I)o

I A_ Viscous Case (P > O)
o (to "_'z.0) unstable k ((¢p'7)-',o)

11

L.

......................... I_"*_O. P=7=O

stable

Figure 4

Asymptotic representation of the cellular hydro-

dynamic neutral stability boundary for the viscous

case. The upper and lower sets of curves corre-

spond to the normal and reduced-gravity regimes, re-

spectively, in the asymptotic limit considered in this

work (curves drawn for the case e = .04, p* = 1.0,

g = 6.0, g* = 2.0). The solid curves correspond to
the inviscid limit (P = O) with nonzero surface ten-

sion (7 = 2.5). The dash-dot curves correspond to

nonzero surface tension (7 = 2.5) and liquid viscos-

ity (P = 1.0), but zero gas-phase viscosity (p*P =

0). The dash-dot-dot curves differ from the dash-dot

curves by the addition of gas-phase viscosity (lz*P =

1.0), and are similar to the dash-dot-dot-dot curves,

where the latter correspond to larger viscosities (P =
#*P = 2.0). The dash-dot-dot-dot-dot curves corre-

spond to a viscous case (P = Iz*P = 1.0), but with

zero surface tension (7 = 0), so that, from Eq. (99),
*

the curves do not intercept the Ap = 0 axis.
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gas-phaseviscosityrepresentsanimportantcorrec-
tion to Levich'soriginaltreatment7 in whichthese
effectsweresimplyassumedto besmall.Theresult
(100a,b)thussynthesizesandsignificantlyextends
theclassicalLandau/Levichresults,6'7notonlyinal-
lowingforadynamicdependenceoftheburningrate
on localconditionsin thevicinityofthe liquid/gas
interface,but alsoin its formaltreatmentof those
processes(surfacetension,liquidandgas-phasevis-
cosity)thataffectdampingoflarge-wavenumberdis-
turbances.

6. Asymptotic Analysis of the Pulsating

Stability Boundary

As indicated previously, the existence of a non-

stationary pressure dependence on the burning rate

(i.e., Ap _ 0) leads to the prediction of a pulsat-
ing hydrodynamic stability boundary that is absent

when such a pressure coupling is neglected, as in

the original Landau/Levich theories. In the invis-

cid case, this boundary (39) is a straight line that
lies below the cellular boundary discussed above, but

this is modified under the influence of viscosity, as

we shall demonstrate.

For the scalings (52) and (62) adopted in the

preceding sections [in particular, for P ,-, O(1), # --.

O(e)], it turns out that, unlike the cellular stability

boundary where viscous effects only have a leading-
order effect in the far outer wavenumber regime, the

effects of viscosity have a leading-order effect on the

pulsating boundary for O(1) wavenumbers as well.

Thus, in the outer wavenumber region, we seek a

solution for the dispersion relation in the form

i_ ~ ,-'/=(i_o + i_1_1/4+ i_=_1/2+..- ), (101)

where the leading-order term is suggested by the ex-

plicit results for the inviscid case, 4'5 and the expan-
sion in powers of e1/4 is suggested by the expansions

for r and q, which, from Eqs. (38) and (39), have
the form

r ,,, r(l12)(_ 1/2 + r(3/4)e 3/4 -{- tie + -" • ,

r(w2) = -iu_op*, r(3/4) = -iwlp*,

rl = -iw2p* - (#*Pk) 2 ,

(102)

q _ q(_l/4)e -1/4 + qoe ° +... ,

1+ i_l/_/p
q(-1/4) = iv/_o/P , qo = 2P

(103)

Corresponding expansions for the coefficients bi in

Eqs. (40) - (48) are determined as

b_ = o_'(-1)e-1 _{_bl-3/4)e-3/4 + b_-112)_-1/2 __ ... ,

i = 1, 2, 8,

(104)

(105)bi = bl-i/2)e -1/2 + b1-1/4)e-1/4 + "'" ,

i = 3, 4, 5, 6,

b,= bF1/4)_-_/4+bl°)_°+..., i=7, (106)

where the leading terms in the expansions for bl,

b2, b4, b6 and bs are consistent with the inviscid
results 5 and the remaining coefficients appear only

for nonzero values of P and are conservatively postu-

lated to have the indicated expansions. Substituting

these expansions into Eqs. (40) - (48) and equating
coefficients of like powers of e, we obtain the leading-

order equations/results

iL _(-1/u) b(-W2) b(-1/,O,_1_3 -{-ik2 +q(-1/4) ----O, (107)

ih_ -1/2)+ik_b_-'/_) +_(1/_)b;1=0, (108)

k (109)
b_-1) = -p-7,

bF1)- (i_°)_ (110)
k '

= - (1 + A;,_
±

b_ -1) (111)
p*Jp*'

b1-1) + b(2-1) - 2b (-1) = 0, (112)

where Eq. (111) was obtained from the leading-order

difference of Eqs. (44) and (45), and the remainder

of the leading-order versions of Eqs. (40) - (48) give

redundant results. Substituting Eqs. (109) - (111)

into Eq. (112), we obtain

k2( A')-- 2 --p (113)(i_0)_ _ 1+ p" ,

and thus (iw0) 2 > 0 for A; > -p*/2, which es-
sentially recovers the leading-order cellular stability

boundary (56) for O(1) wavenumbers, but gives no
information on the pulsating boundary since iwo is

purely imaginary for A_ < -p*/2. Hence, stability
in the latter region is determined by higher-order

coefficients in the expansion (101) for iw.

Continuing with the analysis of the expanded
forms of Eqs. (40) - (48), we obtain the second-

order equations/results

iklb -1/4)+ik bl-'/4)+q(-1/4 °) =o,
(114)

12



ikl b_ -1/4) + _k2 b_ -1/4) + ?'(1/2) b1-3/4)

(115)
-I- r(3/4 ) b(s-1) = 0,

b (-3/4) = O, (116)

kb_-t/2)-q(_l/a)b_-'/4) =iwok (1- A; _p.], (117)

b(-1/a) - k-_bl-3/4) = iw,, (118)
iwo

b(8-3/4) =0, (119)

b_-3/4)= 2b(-3/4)= 0, (120)

b_-1/2) = b_-1/2) = 0, (121)

where Eq. (117) was obtained from the sum of Eq.

(42) multiplied by ikt and Eq. (43) multiplied by ik2

and the use of Eq. (107), Eq. (119) was obtained

from the difference of Eqs. (44) and (45), and Eqs.

(121) follow from Eqs. (47) and (48) in conjunction

with Eq. (116). From these results and Eq. (107),
we thus conclude that

b_-l/4)=iWl=O b_-t/2)=iwo(1-A_' p,] '

(122)
where the fact that /wl = 0 implies the need to

calculate /w2 to determine stability in the region

A_ < -p*/2. Proceeding in this fashion, we ob-
tain from the next-order versions of Eqs. (44), (46),

the difference of Eqs. (44) and (45), and the sum of

Eq. (47) multiplied by ikl and Eq. (48) multiplied
by ik2, the relations

-- it'd0 (-_'_ /t; 01

- ,.b(p)+ = iW2,

(123)

bl-'/:) + .k(2Pk-1)bl-') +b?")
_w0 (124)

2/wop* b(_l) _ 2b(-1/2)
+ _ _ = -iwo,

_ + +
k (12s)

+ A_b(2-112) = -iwop*,

_iwop*b(s -I) +kb(-'12) + iwop*b (-1)

._ k2 i.(_1) (126)
+ icoob_°) - (2Pk - l)_Wo_, 1 = O,

which, in combination with the expressions for b_-1),

b(-1}, b(-1), b(-1/2) and iwo given above, constitute

four equations for the four unknowns b_-1/2), b(°),

b_-1/2) and iw2. Solving these simultaneous equa-

tions, we thus obtain

b_°) = -2Pk 2 ,

[ • ]b_ -1/2)-- 2Pk "{- I "I- _, --2 ( A; _ 2\ P* ] iwo, (127)

\p,]

"k "'J (128)

Equation (128) is the desired result, from which we

conclude that iw2 < 0 for (A_/p*) 2 < l+2Pk. Thus,

in the region A_ < 0,/w2 vanishes on the boundary

Ap ,., -p*v/1 + 2Pk, (129)

which is a pulsating boundary (Fig. 5) since, from

Eq. (113), :w0 is purely imaginary along this curve.

Equation (129) is valid for O(1) wavenumbers,

but since it matches to the leading-order inviscid

inner pulsating boundary Ap = -p* as k --* 0,
and becomes large in a negative sense as k becomes

large, it is clear that Eq. (129) represents the pul-

sating boundary for arbitrary wavenumbers. That

is, for P _ O(1), the effects of (liquid) viscosity on

the pulsating boundary are, to a first approxima-

tion, absent for small wavenumbers, are first felt for

O(1) wavenumber perturbations, and are sufficient
to move this boundary to larger-magnitude values

A_ ,v O(e-1/2) in the far outer wavenumber regime.
In contrast, the cellular boundary (100) is unaffected

for O(1) and smaller wavenumbers, and is only modi-

fied an O(1) amount for O(e -1) wavenumbers, where

both gas and liquid viscosities are equally signifi-
cant. Thus, the hydrodynamic pulsating boundary

is more sensitive to liquid viscous effects than is the

corresponding cellular stability boundary. In fact,
even for smaller-magnitude viscosities such that P ,,-

O(e W2 (with # _ O(e) as above), it is easily demon-

strated (see Appendix C) that, in the Ap regime con-
sidered here, the pulsating boundary is eliminated in

the far outer wavenumber region. However, for even
smaller liquid viscosities such that P = fie _ O(e),

it may be shown by a completely analogous calcu-

lation (Appendix D) to the one given above that

O(1) modifications to the pulsating boundary then

occur in the far outer wavenumber regime accord-

ing to A; = -p*(1 + 2Pkl) 1/_, which, in terms of

unscaled quantities, is the same as Eq. (129).

13
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Figure 5

Asymptotic representation of the pulsating hy-

drodynamic neutral stability boundary for the viscous

case (P > 0). The region between the pulsating and

cellular boundaries (the latter are shown on an ex-

panded scale in Fig. 4) is the stable region with re-

spect to hydrodynamic instability•

Other cellular and pulsating stability bound-

aries are obtained for nonzero values of the temper-

ature sensitivity parameter Ao, and are thus of a

reactive/diffusive nature since they arise from a cou-

pling of the burning rate to the local temperature

field. These have been analyzed in the realistic limit

p << 1 for the inviscid case, s and the generalization

of these results to the fully viscous problem in both

the normal and reduced-gravity regimes is currently

under investigation. One important result obtained

from the inviscid analysis is that a nonzero value of

the thermal sensitivity Ao appears to have little ef-

fect on the hydrodynamic cellular stability boundary

shown in Figures 2 - 4. This result suggests that the

upper stability boundary in Figure 2, corresponding

to the onset of steady cells on the propellant sur-

face, is especially likely to be observable• Indeed, an

analysis of nonlinear stability in the neighborhood

of this boundary 8'9 not only confirms the existence

of steady cellular structures above this boundary,
but also demonstrates how the interaction of certain

types of cellular modes can result in secondary and

tertiary transitions to time-periodic motions 11'13,14

that may also correspond to the sloshing type of be-

havior observed in HAN/TEAN/water mixtures. 3

7. Conclusion

The present work has presented a formal asymp-

totic analysis of hydrodynamic instability in liquid-

propellant combustion for a surface model in which

burning takes place at the liquid/gas interface. The
model itself is based on a synthesized version of the

classical models analyzed by Landau s and Levich, 7

but generalized to allow a coupling of the mass burn-

ing rate with the local pressure and/or temperature
fields. 4,s Focusing on the pressure-coupled version

of the model, the realistic smallness of the gas-to-

liquid density ratio was shown to be a convenient

small parameter upon which to base an asymptotic

treatment, resulting in three distinct wavenumber

regimes such that different physical processes as-

sume dominance in each. Both cellular and pul-

sating hydrodynamic stability boundaries are pre-

dicted, the former corresponding to Landau's origi-

nal notion of hydrodynamic instability, and the lat-

ter representing a new prediction arising from the

pressure dependence of the burning rate. For the

cellular type of instability, it was shown that the

gravitational acceleration (assumed to be normal to
the undisturbed liquid/gas interface in the direc-

tion of the liquid) is responsible for stabilizing long-

wave disturbances, whereas surface tension and vis-

cosity are effective in stabilizing short-wave pertur-

bations. As a consequence, reduced gravity results

in a shift in the minimum of the neutral stability
boundary towards smaller wavenumbers, such that

the onset of hydrodynamic instability, predicted to
occur for sufficiently small negative values of the

pressure-sensitivity coefficient Ap, becomes a long-
wave instability in that limit. An additional result is

that gas-phase viscosity plays an equally significant

role as does liquid viscosity in the large-wavenumber

regime. This important effect, absent from previ-
ous treatments, stems from the fact that gas-phase

disturbances arc larger in magnitude than those in

the liquid phase. That is, although the gas-to-liquid

viscosity ratio is small, a weak damping of a larger

14



magnitudedisturbanceisof equalimportanceto an
O(1)dampingof asmallermagnitudedisturbance.
The inclusionof bothviscousandsurface-tension
effectsina singleanalysis,whichareofcomparable
importancefor short-waveperturbationsthusrep-
resentsanimportantsynthesisof theclassicalLan-
dau/Levichtheoriesof hydrodynamicinstability.

In thecaseof thepulsatinghydrodynamicin-
stabilitythat arisesfromthepressurecouplingthat
existsin the generalizedmodelanalyzedhere,we
find that neithergravitynorsurfacetensionplaya
leading-orderrole,andviscouseffectsare the dom-

inant stabilizing influence. Indeed, for O(1) liquid

Prandtl numbers, the stabilizing effects of (liquid)

viscosity on pulsating instability are significant for

disturbances whose wavenumbers are O(1) or larger.

In contrast, it was shown that viscous effects are only

significant for large-wavenumber disturbances in the

case of cellular instability, where the influence of gas

and liquid viscosity are comparable despite the small

ratio of these two parameters. Although the onset

of pulsating hydrodynamic instability is predicted

to occur only for sufficiently negative values of the

pressure-sensitivity coefficient Ap, the persistence of

the pulsating stability boundary (in the presence of

viscous effects) for small wavenumbers suggests that

it may be observable in those types of liquid propel-

lants, such as those based on hydroxylammonium

nitrate (HAN) and/or triethanolammonium nitrate

(TEAN), that are characterized by negative pres-

sure sensitivities over certain pressure ranges. How-

ever, in attempting to interpret the sloshing behav-

ior that has been observed during combustion of

certain HAN/TEAN/water mixtures, 3 we note that

nonsteady burning can arise via secondary and other

higher-order bifurcations in the cellular instability

region, 11,13,14 as well as from a primary crossing of

the pulsating boundary. Hence, further measure-

ments are generally needed to determine the precise

origin of such behavior in any given experiment.

Appendix A. Derivation of A_(/)(kf)

The steps leading to Eq. (96) for the neutral

stability boundary in the outer wavenumber regime

are as follows. First, from Eqs. (89) and (90), we

obtain expressions for b(-2) and b(6-2) in terms of

b(-2). Substituting these results into Eq. (88) then

determines b(s-2) in terms of b(2-2) as well, so that

b_-2) = -ik1/ \ kl + ,

b_-2) = -ik2/ \ k/ + '

r(-1)

(A.1)

Using this last expression for b_-2) in the equation

obtained from subtracting Eq. (92) from Eq. (91),

thus determines the neutral stability boundary in

terms of b_-2) as

--- _ _(-2) "
"1 (-1)u 2

(A.2)

Using the last of Eqs. (A.1), we now solve Eq. (91)

for b(-1) in terms of b_-1) and b(-2),

+ 1 , (A.3)
r(-l)

and using this result along with the first two of Eqs.

(A.1) in Eqs. (94) and (95) leads to the relations

n 4-114-1 
ikl/ + =

_ __ /A* I
k) + r(_l)

r(-1) P'_
+

r(-1) /

(A.4)

[ (,<,) .,',<,b_-_) P* l+r(_---_) -" _,r(_-'_)+2+ kj, )J

kl 4-1)+bi-l =
ik2/

___ ,'(k} + r(-1) + .
r(_l) _- r(_l) /

(A.5)

Subtracting Eq. (A.5) from Eq. (A.4), we obtain

hi-l) = hi-l) (A.6)
ik2l ikl! '

which, when substituted into Eq. (87), gives

b(7_1) _ k/ b_ 1 =/_/b?l "- ikl! 3
(A.6)

15



Finally,substitutingEq. (A.3)andthelastof Eqs.
(A.1) intoEq. (93)andusingthe fact, fromEq.
(83),thatq(_ 1) = ki, we completely determine b_-2)
as

b__2)= k__.'_ _(_1)-2p'Pkl- 2(1- .'e_¢-,)
p* (r(-1) + kf)(1 + 2p*Pkl) + ki

(A.7)

The remaining coefficients may now be solved for ex-

plicitly. For example, b(4-2), b_-2) and b_-2) are now

determined according to Eqs. (A.1), while the use

of Eq. (A.7) for b(-2) and the first of Eqs. (A.6) for

b(-1) reduces Eqs. (A.3) and (A.4) to two simulta-

neous equations for b_-1) and b_-D. Furthermore,

when Eq. (A.7) is substituted into Eq.(A.2), we ob-

tain the desired expression (96) for A_ (I) .

Appendix B. Intrinsic Instability for A_ > 0

A direct analysis of the dispersion relation (49)

corresponding to the inviscid case indicates that,

in addition to the roots that lead to the stability

boundaries (50) and (51), there is an additional root

that, for p .-_ O(e) << 1 and k _ O(1), is given by

iw ,._ e-lk/A_. 5 It may be shown that this result is
valid in the inner and far outer wavenumber regimes

as well, so that, at least in the inviscid case, the re-

gion A_ > 0 is intrinsically unstable. Based on the
results in Section 5 for the viscous case, we may an-

ticipate that the only possible modification to this

result will occur in the far outer wavenumber regime

k = kf/e, which we now consider.
Thus, we seek a root of the dispersion rela-

tion implied by the system (87) - (95) that has the

asymptotic behavior in the far outer wavenumber

regime given by

iw .._ e-2(iwo + iWle +" "), (B.1)

whereas, based on the inviscid results, the roots of

the dispersion relation that leads to the cellular sta-

bility boundary (97) in the far outer regime behave

as O(e-3/2). Thus, corresponding to Eq. (B.1), the

expressions for r(_ 1) and q(_ 1) in the expansions (82)

- (83) for r and q are now given by

r(-1) - 2#*P

1 . Pk})q(-t) = _/P(zwo +

(B.2)

whereas the appropriate expansions for the coeffi-

cients bi are now written as

b i ,-, bl-2)e-2 + bl-1)e-1 +... ,

_(-2) -2
b i ,'_ bl-3)_ -3 4- 0 i _ 4- ... ,

i = 3, 5, 7, (B.3)

i = 1, 2, 4, 6, 8.

(B.4)

Hence, in place of Eqs. (87) - (95), the leading-
order coefficients and the root iwo are determined

from Eqs. (40) - (48) by

iklib(-2)+ ik2ib1-2) + q(_l)b (-2) =0, (B.5)

ikifb1-3)+ikvb_-3)+r(_,)bl-_)=0, (S._)

ik,1 ¢;3)=o, (B.7)
-bl-3) + iwop* - kI

ik2f b_-3) =0, (S.8)
-b_-3) + iwop* -- k I

b(_:)k,bi_,) .hi_,) .'k,
iWo iwo p--*-- k I

(B.9)

b___) :k:b__3)- A;b(;_)= i_o, (s._o)
74OO

+ iwo /

F 2k_ (kf.'p + 1)]b(:-_- i l+/w0p*-kf

- 2P q(_llb(7 -2) - 2(1 - _*Pr(_l))b(s -3) = O,
(B.11)

(# Pr(-1) 1)b_ -a) n _(-2)* _ _ /-" q(_ 1)u3

ikll b_-3) + iklI#.pb(a-3)
+ (2kf#*P + 1) i_0_TU_ kl

+ Pk 'k'bl - ik, Pb( =O,
led 0

(B.12)
(lz*Pr(-1) - 1)b_-3} - t"q(-1)_s"_(-2)

b(_-3) + ik2l#*Pb(s -a)
+ (2ki#*P + 1)/Wo kf

+ 3)- =o
(B.13)

The dispersion relation for/COo is now obtained

as follows. From Eqs. (B.6) - (B.8), we have

iwop - k I ' iwop -

=
r(-l)(iwop - k I)

(_.14)
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Hence,substitutingthelastof Eqs.(B.14)intothe
differenceof Eqs. (B.9)and(B.10),andcanceling
thecommonfactorb_-3), we arrive at the dispersion
relation

iwop--.-7- kl + 1 + Ap -- 0, (B.15)

or

(iwop*-kf)r(_l)Ap-p kfr(_l)-p kf = 0, (B.16)

where we note that in going from Eq. (B.15) to

Eq. (B.16), the extraneous root iwo = kf/p* has
been introduced into the dispersion relation. It is

readily shown that for #*P << 1, r(-1) _ -iwop*.
Substituting the latter into Eq. (B.16), we obtain

a quadratic for iwo which has the roots kf/A_ and

the extraneous root kf/p*. Thus, for #*P << 1, we

recover the inviscid result iwo .-, k flAp, indicating

instability for Ap > 0.
For the viscous case p*P _ O(1), we substi-

tute the expression for r(-t) given in the first of
Eqs. (B.2) into Eq. (B.16), and after squaring to

eliminate the square root and factoring out the ex-

traneous factor (iwop* - kl) noted above, we are left

with the dispersion relation

a 2 + [(/_*Pk! - 1)A; - 2P*la + p*(A; + p*)

- _*PkfA*p(g; + 2p*) = 0,
(B.lw)

where c_ - iwop*A_/k I. Solving for c_ and choosing
the nonextraneous root (the one that collapses to

the inviscid result in the inviscid limit), we finally
obtain

Appendix C.

Effect of Viscosity on the Hydrodynamic

Pulsating Stability Boundary for k >> 1

The existence of the pulsating stability bound-

ary (51) obtained from the inviscid analysis is highly
sensitive to viscous effects. Indeed, it is easily shown

that, in the far outer wavenumber region where vis-

cous effects are first felt, a weakly nonzero value

of the liquid-phase Prandtl number P, while pro-

ducing no leading-order effect on the inviscid cellu-

lar boundary, is sufficient to eliminate the pulsating

type of hydrodynamic instability. Thus, we retain

the scalings (52) and (62), but consider the weakly
viscous case

P = P*v_, #p = #.p,e3/2 (C.1)

where the choice of scaling (C.1) permits the same

scalings for/w and those coefficients b_ (i = 1, 2, 4,

6, 8) that apply in the inviscid limit. Thus, based on
the inviscid analysis of the dispersion relation (49),

we seek corresponding roots iw for the weakly vis-

cous problem in the far outer wavenumber region

k = kf/e in the form

i0) _'_ £-3/2 (iO) 0 ___ iW1£1/2 .{_... ), (0.2)

where, in contrast to the expansion (B.1) in the re-

gion A_ > 0, this form of the expansion will describe
both the cellular and pulsating hydrodynamic insta-

bilities in the region Ap < 0.
In the far outer wavenumber region k = kl/e,

the expansions for r and q are given by

k I
iwo =

Ap

kf { A;(1 - #*Pki) - E_(A;, kf), g_, > 0
+ 2p'A----_p', A;(1 #*Pkl) + a(A;,ki), A; < O,

a(A;, kf) = + #*Pkl) 2 + 4p*p*PkfA_.

(B.18)
It is clear from Eq. (B.16) that for sufficiently small

#*P and/or IA;I, iwo > 0 for A; > 0. We also

observe that iwo "., kf/A_ as k! --} 0, indicating
that the inviscid result is recovered as the outer

wavenumber regime is approached. Although this

root can turn negative for sufficiently large A_ (in-

deed, iwo = 0 for 2#*PklA_/p* = 1 - 2#*Pkl +

_/1 + 4_*2p2k) > 0), this region is of little further

interest since hydrodynamic instability first sets in

for negative values of A_.

?"_,_ r(_i/2)£ -1/2 Jr- roe° + .-- ;
,_,_2

r(_w2 ) = --iwop* -- # r _;I ' ro = -iwlp* ,

(0.3)

q _ q(_1)e -1 + q(_1/2)_ -1/2 .-_... ;

q(-1)= (i o/P"+ ,
1

q<-l/2)= (imolP" + -112 ,
(c.4)

and appropriate expansions for the coefficients b_ axe
written as

b_ _ b_-2)e -2 + b_-al2)e -3/_ +". ,

i = 1, 2, 8,
(0.5)

(-3/2) -3/2 bl-1)C1 + ,bi _ bi _ + -"

i=3,4,5,6, 7.
(0.6)
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SubstitutingtheseexpansionsintoEqs.(40)- (48)
andequatingcoefficientsof likepowersof e,weob-
tain

ikl,f b(-3/2) + ik2j b_ -3/2) + q(-1) b(-3/2)

_kl,_bl-_/_)+ik_,,b(_-_/_'+_(__/_)b(_-_

=0,

(C.7)

----0,

(c.8)
b(g2)= -k_/p", (C.9)

(C.10)

-ik,j [rig3/_) -dg3/_)] = 0,

b___/:) _ksbi-_)= i_o, (c.n)

-0"d_-_)+ (p"+ A;)b_-_)=0, (C.12)

( ¢,>1 + iwo ) + (C.13)

- 2_,'q(_l)g-3/_)- 2bl-_)=_k_,

ikl,l _,(-2) _ p. q(_l)b_-3/2)
k! "2

+ 2e*kfik'lJb_-2)-,wo P_ ik,,! b_-3/2) -- ikl,lp._.._7_,

(C.14)

ik2,fb(-2) _ p* q(_l)b_ -3/2)
kf 2

..... ikz,f h(-2) p. b(_3/2) = ik2,l
+ zr _f_wo _1 - ik2,I p. ,

(C.15)

where Eq. (C.10) was obtained from the leading-
order difference of Eq. (42) multiplied by ik2,I and

Eq. (43) multiplied by ikl,!, and Eq. (C.12) was

obtained from the leading-order difference of Eqs.

(44) and (45).

Equations (C.7) - (C.15) above constitute nine

equations for the nine leading-order quantities b_-2),

b(_-_),___(-_/_),b(_-_)and,_o Thus,fromEqs.(c9),
(C.12) and (C.13), we obtain

2kyP*_ b__2) k I 2P*q(_l)b (-a/2)1 + i_oo ) p*

+ 2(p* + A;)k I
p.2 = 3'k_ ,

(C.16)
while the sum of Eq. (C.14) multiplied by ikl,!

and Eq. (C.15) multiplied by ik2,i, along with Eqs.

(C.7) and (C.9), gives

[___)+_}]b___,__k_:bi__,=o. (c.m
7.(,,d0

Hence, using the definition of q(-1), Eqs. (C.11) and

(C.17) determine b_-2) and b(-3/2) as

b__2) ia_o • 2 b$-3/2) =-2P*k_= --fT, (_P kI + i_0),
--j

(c._s)
Substituting the results (C.17) and (C.18) into Eq.

(C. 16), we finally obtain the leading-order dispersion

relation for iwo as

(_o)_+4P'k__o- 4Fk_/_oP"+k}P"_=
2k_
p.-_(A;-A;)-4P':k),

(c._9)
where ),_ is given by the expression (55) for the

leading-order inviscid cellular boundary A_ (I) in the
far outer wavenumber region, and the square root,

which arises from the definition in (C.4) of q(-1),
denotes the principal square root.

In the inviscid limit P* = 0, we recover the

leading-order results for the inviscid case. In par-

ticular, Eq. (C.19) reduces to (iwo) 2 = 2k_(A;-

f_;)/p.2, and hence iwo > 0 (unstable) for A_* > ,4;

and is pure imaginary for A_ < fi,_. Stability in the

latter region is thus determined by the coefficient
iwl of the next term in the expansion (C.2), which,

from either a continuation of the present calculation

or from the direct expansion of the inviscid disper-

sion relation (49), is given by iwl = (A; 2 _p.2)/p.2.

Consequently, the region -p* < A_ < fi,_ is stable,

while the region A_ < -p* is unstable, and identical
results are obtained in the inner and outer wavenum-

ber regimes. Hence, we recover both the steady (cel-

lular) stability boundary A; = Ap (on which iw is
identically zero) and the nonsteady (pulsating) sta-

bility boundary A_ = -p* (on which only the real
part of iw is zero) shown in Figures 2 and 3.

For P* > 0, it is readily seen from Eq. (C.19)

that the root iwo = 0 still corresponds to the invis-

cid cellular boundary A_ A_, so that the cellular
boundary is unchanged from its inviscid limit in the

weakly viscous regime described by (C.1). On the
other hand, it can be shown that the entire region

A_ < ,4_ is now stable. This is most easily seen
by considering the regime 0 < P* << 1 and seeking
solutions iwo of Eq. (C.19) in the expanded form

iwo '_ iao + ial P* + ia2P .2 + "" • (C.20)

Then, at leading order with respect to the above ex-

pansion, we obtain the previous inviscid result (cor-
responding to P* = 0),

2k_ •
(ia0) 2 = -_(A, - A;), (C.21)
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which implies instability only for Ap > Ap, and neu-
tral stability (Re{ia0} -- 0) otherwise. At the next

order, however, we obtain

i_o(i_l + 2k}) = o, (c.22)

which implies stability (ial = -2k} < 0) in the re-

gion A_ < A_. Thus, in the Ap regime considered
here, even very weak (P* << 1) viscosity is suffi-

cient to destroy the pulsating type of instability, at

least in the far outer wavenumber region where vis-

cous effects are first felt, whereas the cellular stabil-

ity boundary is clearly unaffected even when P* ,._

O(1). Indeed, the latter is modified only for O(1)
values of the unscaled Prandtl number P, as de-

scribed in the main body of the text.

Appendix D.

The Pulsating Stability Boundary for

Small Liquid Prandtl Numbers

For small liquid viscosities such that P = /Se,

and the same scalings (52) and (62) as in the P ,-_

O(1) case analyzed in the main body of the text,
the effect of viscosity on the cellular boundary dis-

appears at leading order [P --* 0 in Eqs. (100)], while

the effect of viscosity on the pulsating boundary is

only significant in the far outer wavenumber regime.

In that case, the appropriate expansions analogous

to Eqs. (101) - (106) are given by

i_ ~ _-3/2(i_0+ i_1_'/4+ i_0_1/2+ .. ), (9.1)

r -,_ r(_l/2)e 1/2 q- O(e -1/4) , r(_1/2) = --iwop*,
(0.2)

q _ q(-s/4)e -s/4 + O(e-1), q(-s/4) --- (iwo/P) W2,
(9.3)

b,= + + +...,
i=1,2,8,

(0.4)

bi = bl-3/2)e-3/2+bl-5/4)e-s/4+ ..., i = 3, 4, 5, 6,

(0.5)

bi = bl-5/4)E-5/4_{_bl-1)_-l_[_... , i --- 7. (D.6)

Substituting these expansions into Eqs. (40) - (48)

and equating terms corresponding to like powers of

e then gives, as previously, a sequence of equations
for the recursive determination of the coefficients in

the above expansions. Similar to the calculation for

P ,._ O(1) in the outer wavenumber regime (Section

6), we obtain in this case that

2k}
(i 0)2_- (A;-i;), --0,

]iw2= kILk p. ] - 2/5k I - 1 ,

(D.7)

where .2,; = (p*/2)(p*Tkf - 1) is the inviscid cel-
lular boundary in the far outer wavenumber regime

given by Eq. (55). The first of Eqs. (D.7) thus re-

covers the cellular stability boundary, but since iwo

is purely imaginary for A_ < A;, stability in that

region is determined by the real part of the next
nontrivial coefficient in the expansion (D.1). Thus,

setting iw2 = 0 in the last of Eqs. (D.7), the pulsat-

ing stability boundary in the far outer wavenumber

regime is given by

* = _p* ¢Ap 1 + 2Pkf , (D.8)

which, in the limit k I ---*O, matches with the leading-

order pulsating boundary A_ = -p* in the outer
wavenumber region, which is unaffected by viscosity

to this order of approximation. Thus, Eq. (D.8),

which in terms of k is given by A_ = -p*(1 +

2/Sek) 1/2, is valid for arbitrary wavenumbers. Writ-

ing /5 in terms of its unscaled counterpart P, this

expression becomes identical to Eq. (129), which
thus remains valid in the limit of small P.
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